
Week 2 - Friday



 What did we talk about last time?
 Java Collections Framework (JCF)
 Computational complexity
 Big Oh notation











int count = 0;
for (int i = 0; i < n; i += 2) {
for (int j = 0; j < n; j += 3) {
count++;

}
}



int count = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (j == n - 1) {

i = n;
}
count++;

}
}



 Here is a table of several different complexity measures, in 
ascending order, with their functions evaluated at n = 100

Description Big Oh f(100)

Constant O(1) 1

Logarithmic O(log n) 6.64

Linear O(n) 100

Linearithmic O(n log n) 664.39

Quadratic O(n2) 10000

Cubic O(n3) 1000000

Exponential O(2n) 1.27 x 1030

Factorial O(n!) 9.33 x 10157



 The log operator is short for logarithm
 Taking the logarithm means de-exponentiating something

log 107 = 7
log 10𝑥𝑥 = 𝑥𝑥

 What's the log 1,000,000 ?



int count = 0;
for (int i = 1; i <= n; i *= 2) {

count++;
}



 Formal definition:
 If bx = y
 Then logb y = x (for positive b values)

 Think of it as a de-exponentiator
 Examples:
 log10(1,000,000) = 
 log3(81) = 
 log2(512) = 



 In the normal world, when you see a log without a subscript, it 
means the logarithm base 10
 "What power do you have to raise 10 to to get this number?"

 In computer science, a log without a subscript usually means the 
logarithm base 2
 "What power do you have to raise 2 to to get this number?"

log 28 = 8
log 2𝑦𝑦 = 𝑦𝑦

 What's the log 2,048? (Assuming log base 2)



 logb(xy) = logb(x) + logb(y)
 logb(x/y) = logb(x) - logb(y) 
 logb(xy) = y logb(x)
 Base conversion:
 logb(x) = loga(x)/loga(b)

 As a consequence:
 log2(n) = log10(n)/c1 = log100(n)/c2 = logb(n)/c3 for b > 1
 log2n is O(log10n) and O(log100 n) and O(logbn) for b > 1



 Add one to the logarithm in a base and you'll get the number 
of digits you need to represent that number in that base

 In other words, the log of a number is related to its length
 Even big numbers have small logs

 If there's no subscript, log10 is assumed in math world, but log2
is assumed for CS
 Also common is ln, the natural log, which is loge



 As we said, the logarithm of the 
number is related to the number 
of digits you need to write it

 That means that the log of a very 
large number is pretty small

 An algorithm that runs in log n
time is very fast

Number log10 log2

1,000 3 10

1,000,000 6 20

1,000,000,000 9 30

1,000,000,000,000 12 40





 Let f(n) and g(n) be two functions over integers
 f(n) is O(g(n)) if and only if
 f(n) ≤ c∙g(n) for all n > N
 for some positive real numbers c and N

 In other words, past some arbitrary point, with some arbitrary 
scaling factor, g(n) is always bigger



 We've been sloppy so far, saying that something is O(n) when its 
running time is proportional to n

 Big Oh is actually an upper bound, meaning that something 
whose running time is proportional to n  (like 42n + 7)
 Is O(n)
 But is also O(n2)
 And is also O(2n)

 If the running time of something is actually proportional to n, we 
should say it's Θ(n)

 We often use Big Oh because it's easier to find an upper bound 
than to get a tight bound



 O establishes an upper bound
 f(n) is O(g(n)) if there exist positive numbers c and N such that f(n) ≤ 

cg(n) for all n ≥ N
 Ω establishes a lower bound
 f(n) is Ω(g(n)) if there exist positive numbers c and N such that f(n) ≥ 

cg(n) for all n ≥ N
 Θ establishes a tight bound
 f(n) is Θ(g(n)) if there exist positive numbers c1,c2 and N such that 

c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ N



 O and Ω have a one-to-many relationship with functions
 4n2+ 3 is O(n2) but it is also O(n3) and O(n4 log n)
 6n log n is Ω(n log n) but it is also Ω(n)

 Θ is one-to-many as well, but it has a much tighter bound
 Sometimes it's hard to find Θ
 Upper bounding isn't too hard, but lower bounding is difficult for 

many real problems



1. If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n))
2. If f(n) is O(h(n)) and g(n) is O(h(n)), then f(n) + g(n) is O(h(n))
3. ank is O(nk)
4. nk is O(nk+j), for any positive j
5. If f(n) is cg(n), then f(n) is O(g(n))
6. loga n is O(logb n) for integers a and b > 1
7. loga n is O(nk) for integer a > 1 and real k > 0



 Implement binary search
 How much time does a binary search take at most?
 What about at least?
 What about on average, assuming that the value is in the list?



 Give a tight bound for n1.1 + n log n
 Give a tight bound for 2n + a where a is a constant
 Give functions f1 and f2 such that f1(n) and f2(n) are O(g(n)) but 

f1(n) is not O(f2(n))







 Abstract data types (ADTs)
 Bags and ArrayList



SCAN the QR CODE to REGISTER



 Read section 1.3
 Finish Assignment 1
 Due tonight by midnight!

 Start Assignment 2
 Due next Friday by midnight

 Keep working on Project 1
 Due Friday, September 20 by midnight


	COMP 2100
	Last time
	Assignment 1
	Project 1
	Questions?
	Back to complexity
	What's the running time?
	What's the running time?
	Hierarchy of complexities
	What's log?
	What's the running time?
	Logarithms
	Log base 2
	Log math
	More on log
	Log is awesome
	Big Oh, Big Omega, Big Theta
	Formal definition of Big Oh
	Different kinds of bounds
	All three are useful measures
	Tight bounds
	Facts
	Binary search example
	Complexity practice
	Quiz
	Upcoming
	Next time…
	Slide Number 28
	Reminders

